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1. Intuition motivation



Stochastic optimization problem

Data 𝑋1,…,𝑋𝑛 and parameters 𝜃 to learn, with loss

ℓ 𝜃, 𝑋 ,

We want to solve the population (risk) problem

min𝑅 𝜃 ≔ 𝔼𝑃0 ℓ 𝜃; 𝑋 ,

s. t. 𝜃 ∈ Θ.

• Loss ℓ 𝜃; 𝑋 , Data/randomness is 𝑋, Parameters 𝜃 ∈ Θ.

• 𝑃0 often unknown.



Empirical Risk Optimization

Goal:

minimize
𝜃∈Θ

𝑅 𝜃 = 𝔼𝑃0 ℓ 𝜃; 𝑋 ,

Empirical risk minimization:

መ𝜃erm = argmin
𝜃∈Θ

𝔼 ෠𝑃𝑛
ℓ 𝜃; 𝑋 =

1

𝑛
෍

𝑖=1

𝑛

ℓ 𝜃; 𝑋𝑖 ,

Solve empirical risk minimization problem

minimize
𝜃∈Θ

෍

𝑖=1

𝑛
1

𝑛
ℓ 𝜃; 𝑋𝑖 ,



Bias & variance tradeoff

• Any learning algorithms has bias (approximation error, residual, etc.) and 

variance (estimation error). 

• From empirical Bernstein's inequality, with probability 1 − 𝛿,

𝑅 𝜃 = 𝔼 ℓ(𝜃; 𝑋) ≤ 𝔼 ෠𝑃𝑛
ℓ 𝜃: 𝑋

bias

+
𝐶 Var ෠𝑃𝑛 ℓ 𝜃: 𝑋

𝑛

variance

+
𝐶 log

1
𝛿

𝑛
,

• Can be made uniform in 𝜃 ∈ Θ.



Bias & variance tradeoff

• From empirical Bernstein's inequality, with probability 1 − 𝛿,

𝑅 𝜃 = 𝔼 ℓ(𝜃; 𝑋) ≤ 𝔼 ෠𝑃𝑛
ℓ 𝜃: 𝑋

bias

+
𝐶 Var ෠𝑃𝑛 ℓ 𝜃: 𝑋

𝑛

variance

+
𝐶 log

1
𝛿

𝑛
,

• Variance Regularization: trade off bias-variance optimally by solving

መ𝜃var ∈ argmin
𝜃∈Θ

𝔼 ෠𝑃𝑛
ℓ 𝜃: 𝑋

bias

+
𝐶 Var ෠𝑃𝑛 ℓ 𝜃: 𝑋

𝑛

variance

.



Optimizing for bias & variance

መ𝜃var ∈ argmin
𝜃∈Θ

𝔼 ෠𝑃𝑛
ℓ 𝜃: 𝑋

bias

+
𝐶 Var ෠𝑃𝑛 ℓ 𝜃: 𝑋

𝑛

variance

.

Issue: Variance is non-convex.

• Example: 𝜃 → Var ℓ 𝜃, 𝑋

for ℓ 𝜃; 𝑋 = 𝜃 − 𝑋

where 𝑋 ∼ Uni −2,−1,0,1,2 .



Robust Optimization ≈ Variance Regularization

Theorem (N. & Duchi 2017)

Assume that ℓ 𝜃; 𝑋 ≤ 𝑀. With prob. at least 1 − 𝑒𝑥𝑝 −
𝑛 𝑉𝑎𝑟 ℓ(𝜃;𝑋)

36𝑀2

max
𝑃:𝐷𝜒2 𝑃ǁ ෠𝑃𝑛 ≤

𝜌
𝑛

𝔼𝑃 ℓ 𝜃; 𝑋

Robust

= 𝔼 ෠𝑃𝑛
ℓ 𝜃: 𝑋 +

𝐶 Var ෠𝑃𝑛 ℓ 𝜃: 𝑋

𝑛

Bias+Variance

.

• Can be made uniform over 𝜃 ∈ Θ.

• Robust is convex, Bias + Variance is (generally) non-convex.



2. Optimization theoretical analysis



Distributionally Robust Optimization

Goal:

minimize
𝜃∈Θ

𝑅 𝜃 = 𝔼𝑃0 ℓ 𝜃; 𝑋 ,

Instead, solve distributionally robust optimization problem

minimize
𝜃∈Θ

max
𝑝∈𝒫𝑛,𝑝

෍

𝑖=1

𝑛

𝑝𝑖ℓ 𝜃; 𝑋𝑖 ,

where 𝒫𝑛,𝑝 is some appropriately chosen set of vectors. 

Remark: Do well almost all the time instead of on average. Statistically 

principled choice of 𝒫𝑛,𝑝 → optimality certificates



Generalized Empirical Likelihood

Idea: Instead of using empirical distribution ෠𝑃𝑛 on sample 𝑋1,…,𝑋𝑛, 

look at all distribution ‘near’ it.  

Measures of closeness paper use: Chi-square divergence

𝐷𝜒2 𝑃ǁ𝑄 =
1

2
෍

𝑥:𝑞 𝑥 >0

𝑝 𝑥 − 𝑞 𝑥
2

𝑞 𝑥

Worst-case region:

𝒫𝑛,𝑝 = 𝑃;𝐷𝜒2 𝑃ǁ ෠𝑃𝑛 ≤
𝜌

𝑛



Robust Optimization

መ𝜃rob = argmin
𝜃∈Θ

max
𝑃:𝐷𝜒2 𝑃ǁ ෠𝑃𝑛 ≤

𝜌
𝑛

𝔼𝑃 ℓ 𝜃; 𝑋

Nice properties: 

• Convex optimization problem = Computationally efficient

• Conic forms [2]

• Efficient solution methods as fast as stochastic gradient descent [3]
[2] Ben-Tal A, Den Hertog D, De Waegenaere A, et al. Robust solutions of optimization problems affected by 

uncertain probabilities[J]. Management Science, 2013, 59(2): 341-357.

[3] Duchi J C, Glynn P W, Namkoong H. Statistics of robust optimization: A generalized empirical likelihood 
approach[J]. Mathematics of Operations Research, 2021, 46(3): 946-969.



Robust Optimization ≈ Variance Regularization

Theorem (N. & Duchi 2017)

Assume that ℓ 𝜃; 𝑋 ≤ 𝑀. With prob. at least 1 − 𝑒𝑥𝑝 −
𝑛 𝑉𝑎𝑟 ℓ(𝜃;𝑋)

36𝑀2

max
𝑃:𝐷𝜒2 𝑃ǁ ෠𝑃𝑛 ≤

𝜌
𝑛

𝔼𝑃 ℓ 𝜃; 𝑋

Robust

= 𝔼 ෠𝑃𝑛
ℓ 𝜃: 𝑋 +

𝐶 Var ෠𝑃𝑛 ℓ 𝜃: 𝑋

𝑛

Bias+Variance

.

• Can be made uniform over 𝜃 ∈ Θ.

• Robust is convex, Bias + Variance is (generally) non-convex.



Optimal bias & variance tradeoff

Let 𝒞𝑛 Θ be complexity of ℓ 𝜃;⋅ ; 𝜃 ∈ Θ and 

መ𝜃rob = argmin
𝜃∈Θ

max
𝑃:𝐷𝜒2 𝑃ǁ ෠𝑃𝑛 ≤

𝜌
𝑛

𝔼𝑃 ℓ 𝜃; 𝑋

Theorem (N. & Duchi 2017)

Let 𝜌 = log
1

𝛿
+ 𝒞𝑛 Θ . If ℓ 𝜃; 𝑋 ∈ 0,𝑀 , then with prob. 1 − 𝛿,

𝑅 መ𝜃rob = 𝔼 ℓ መ𝜃rob; 𝑋 ≤ min
𝜃∈Θ

𝑅 𝜃 + 2
2𝜌 Var ℓ 𝜃: 𝑋

𝑛

optimal trafeoff

+
𝐶𝑀𝜌

𝑛
.

for some universal constant 0 < 𝐶 < 30.  



Fast rates from optimal tradeoff

• ERM: For 𝑅 𝜃∗ ≔ inf
𝜃∈Θ

𝑅(𝜃), with high prob., 

𝑅 መ𝜃erm ≤ 𝑅 𝜃∗ +
2𝜌𝑀𝑅 𝜃∗

𝑛
+
𝐶𝑀𝜌

𝑛
.

• If Var ℓ 𝜃∗; 𝑋 ≪ 𝑀𝑅 𝜃∗ , first bound is tighter. See paper for an 

explicit example where 

𝑅 መ𝜃rob ≤ 𝑅 𝜃∗ +
𝐶1

𝑛
but    𝑅 መ𝜃erm ≥ 𝑅 𝜃∗ +

𝐶2

𝑛



Play a two-player stochastic game

min
𝜃∈Θ

max
𝑝∈𝒫𝑛,𝑝

෍

𝑖=1

𝑛

𝑝𝑖ℓ 𝜃; 𝑋𝑖

Algorithm

Adversary: Sample 𝑝 Player: Run SGD

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇ℓ(𝜃𝑡, 𝑋𝑖)

Sample

reweight



3. Experiments 



Upweighting Harder Examples

minimize
𝜃∈Θ

max
𝑃:𝐷𝜒2 𝑃ǁ ෠𝑃𝑛 ≤

𝜌
𝑛

𝔼𝑃 ℓ 𝜃; 𝑋

• Upweights hard (high loss) examples when learning

• Often, rare examples are hard

• Expect improvements 

on rare and hard expmples



Reuters Corpus (路透社语料库)

Problem: Classify documents as a subset of the 4 categories:

{Corporate, Economics, Government, Markets}

• Data: pairs 𝑥 ∈ ℝ𝑑 represents document, 𝑦 ∈ −1, 1 4.

• Logistic loss, with Θ = 𝜃 ∈ ℝ𝑑; 𝜃 1 ≤ 1000

• 𝑑 = 47,236, 𝑛 = 804,414, 10-fold cross-validation/



Reuters Corpus (路透社语料库)



Reuters Corpus (路透社语料库)



4. Summary



Summary

Optimization and statistical theory for robust optimization

1. Convex procedure for variance regularization.

2. Generalization guarantees for optimal tradeoff between bias & variance.

3. Improves performance on hard instances empirically.
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