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1. Few-show on Graph



Few-shot on Graph？

• Node Classification (Transductive)

• Link Prediction

• Graph Classification

• Relation Classification

• Reasoning on Knowledge-Graph

—— Deep Long-Tailed Learning: A Survey, Zhang & etc., PAMI 2023. 

—— A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions, Liu & etc., arXiv 2023. 

—— A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, Jin & etc., arXiv 2023.  



• CV: 1st Transductive Inference Explicitly in Few-Shot Learning. 

—— Learning to Propagate Labels: Transductive Propagation Network 
for Few-shot Learning. Liu & etc., ICLR 2019. 



2. Scenarios and Definition on 
Transductive Node Classification



Scenarios: Transductive Node Classification
• 通过使用图上已知标记(Label)的节点，来预测图上未知标记的节点的标记。

• 仅关注于当前图中的节点，而不考虑将来可能出现的新节点。

• Always Few-shot!

//  Semi-supervised: 训练数据集中只有部分数据标记有标签，而大部分数据没有标签。目标是通过利用有标签数据
和无标签数据的信息（feature），来进行模型训练和预测。
//  Inductive: 通过使用已知标记的节点来构建一个模型，然后将该模型应用于未来出现的新节点。它更加关注于构
建通用的模型，可以应用于未来的节点分类任务。（GraphSAGE）
—— Inductive Representation Learning on Large Graphs. Hamilton & etc., NIPS 2017. 



Naïve Definition

• Input: 
• Graph 𝐺 = 𝑉, 𝐸, 𝑋, 𝑌 . 

• Node Feature 𝑋 ∈ ℝ 𝑉 ×𝑑 . 

• Known Node Label 𝑦𝐿 ∈ 0, 1 𝑉𝐿 . 
(𝑉𝐿 ∈ 𝑉 The labeled node set. )

• Output: 
• Unknown Node Label 𝑦𝑢 ∈ 0, 1 𝑉𝑈 . 

(𝑉𝑈 = 𝑉 \ 𝑉𝐿 ∈ 𝑉 the unlabeled node set. )



3. Traditional Method for TNC 



• 1. Simplicial Label Propagation or GNNs. 

—— Semi-Supervised Learning Using Gaussian Fields and Harmonic 
Functions. Zhu & etc., ICML 2003. 



. 

—— Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions. Zhu & etc., ICML 2003. 

1. Simplicial Label Propagation or GNNs

• LP assumptions: 

1. Homophily

• GNNs assumptions: 

1. Labels only depend on 

neighbor features. 

2. Features are informative. 

• Propagation ≈ Smoothness



• 1. Simplicial Label Propagation or GNNs. 

—— Semi-Supervised Learning Using Gaussian Fields and Harmonic 
Functions. Zhu & etc., ICML 2003. 

• 2. GNNs + Propagation. 

—— Predict then Propagate: Graph Neural Networks meet Personalized 
PageRank. Gasteiger & etc., ICLR 2019. 

—— Unifying Graph Convolutional Neural Networks and Label 
Propagation. Wang & Leskovec., ariXiv 2020. 



2. GNNs + Propagation

—— Predict then Propagate: Graph Neural Networks meet Personalized PageRank. Gasteiger & etc., ICLR 2019. 
—— The Anatomy of a Large-Scale Hypertextual Web Search Engine. Brin & Page, Computer networks and ISDN  
systems, 1998. 

PPNP & APPNP: 

• GCN + PageRank :

1. Personalization 

2. Approximation

3. Embedding Propagation

(≈ Feature Propagation)



PPNP & APPNP: 

• GCN + PageRank :

1. Personalization

2. Approximation

3. Embedding Propagation (≈ Feature Propagation)

4. No labels utilized during training and inference. 

5. Marginal improvement. 

2. GNNs + Propagation

—— Predict then Propagate: Graph Neural Networks meet Personalized PageRank. Gasteiger & etc., ICLR 2019. 
—— The Anatomy of a Large-Scale Hypertextual Web Search Engine. Brin & Page, Computer networks and ISDN  
systems, 1998. 



2. GNNs + Propagation

—— Unifying Graph Convolutional Neural Networks and Label Propagation. Wang & Leskovec., ariXiv 2020.
—— Graph Attention Networks. Velickovic & etc., ICLR 2018.   

GCN-LPA: 

• GCN + LPA :

1. LPA during training weight. 

2. Overemphasis to Label.

3. Depending on GNNs with trainable weight edge like GAT. 



• 1. Simplicial Label Propagation or GNNs. 

—— Semi-Supervised Learning Using Gaussian Fields and Harmonic 
Functions. Zhu & etc., ICML 2003. 

• 2. GNNs + Propagation. 

—— Predict then Propagate: Graph Neural Networks meet Personalized 
PageRank. Gasteiger & etc., ICLR 2019. 

—— Unifying Graph Convolutional Neural Networks and Label 
Propagation. Wang & Leskovec., ariXiv 2020. 

• 3. Not only Propagation on Feature but also done so on Label. 

—— Masked Label Prediction: Unified Message Passing Model for Semi-
Supervised Classification. Shi & etc., IJCAI 2021. 



3. GNNs + L&F Propagation

—— Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. Shi & etc., IJCAI 2021.
—— Training Sparse Neural Networks. Srinivas& etc., CVPR Workshops, 2017. 

UniMP:

• GAT+  All Propagation:

1. L&F Propagation; 

2. Masked Known Label.



3. GNNs + L&F Propagation

UniMP:

• GAT+  All Propagation:

1. L&F Propagation; 

2. Masked Known Label.

• SOTA ! (2022.09)

—— Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification. Shi & etc., IJCAI 2021.
—— Training Sparse Neural Networks. Srinivas& etc., CVPR Workshops, 2017. 



4. Propagation on 
Residuals



• 1. LP on residuals. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, 
KDD 2020. 



1. LP on residuals for improving GNN regression algorithms. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, KDD 2020. 

Claim: GNNs tend to generate biased predictions, resulting in residuals. 

Reason:  Labels and features are not necessarily strongly correlated.



1. LP on residuals for improving GNN regression algorithms. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, KDD 2020. 

Problem: LPA appended can not figure out this situation. 

Reason:  The pseudo-label distribution has changed. 



1. LP on residuals for improving GNN regression algorithms. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, KDD 2020. 

Solution: Residual Propagation  

1. Base prediction. 

2. Residual Cal. on labeled nodes. 

3. Residual propagation.

4. Final prediction 

      = smoothed residual + base prediction 

     (= true value on labeled nodes)



1. LP on residuals for improving GNN regression algorithms. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, KDD 2020. 



• 1. LP on residuals. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, 
KDD 2020. 

• 2. Using LP on residuals but removing GNNs altogether. 

—— Combining Label Propagation and Simple Models Out-performs Graph 
Neural Networks. Huang et al., ICLR 2021. 



2. Using LP but removing GNNs altogether for good classification performance. 

—— Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. Huang et al., ICLR 2021. 



•Leaderboard for ogbn-products.
——https://ogb.stanford.edu/docs/leader_nodeprop/

• Amazon product co-purchasing network:
• Undirected and unweighted;
• Node: products sold in Amazon (# 2,449,029);
• Edge: indicates the products are purchased 

together (# 61,859,140); 
• Node features: the product descriptions (PCA). 

• Prediction task: 
• Category of a product (# 47). 

• Methods related to C&S (up to now): 
• Top 5:        4/5       90%
• Top 20:      9/20     45% 

https://ogb.stanford.edu/docs/leader_nodeprop/


…
Node2vec

…

…
GAT (Neighbor sampling or Cluster) (+ C&S)

…
GraphSAGE (+ C&S)

…

…



• 1. LP on residuals. 

—— Residual Correlation in Graph Neural Network Regression. Jia & Benson, 
KDD 2020. 

• 2. Using LP on residuals but removing GNNs altogether. 

—— Combining Label Propagation and Simple Models Out-performs Graph 
Neural Networks. Huang et al., ICLR 2021. 

• 3. Statistical framework that unifies LP and GNN ideas.

—— A Unifying Generative Model for Graph Learning Algorithms: Label 
Propagation, Graph Convolutions, and Combinations. Jia & Benson, SIAM 
Journal on Mathematics of Data Science 2022.



3. Statistical framework that unifies LP and GNN ideas. 

—— A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions, and 
Combinations. Jia & Benson, SIAM Journal on Mathematics of Data Science 2022.



3. Statistical framework that unifies LP and GNN ideas. 

• Input: 
• Graph 𝐺 = 𝑉, 𝐸, 𝑋, 𝑌 . 

• Node Feature 𝑋 ∈ ℝ 𝑉 ×𝑑 . 

• Known Node Label 𝑦𝐿 ∈ 0, 1 𝑉𝐿 , (𝑉𝐿 ∈ 𝑉 The labeled node set. )

• Output: 
• Unknown Node Label 𝑦𝑈 ∈ 0, 1 𝑉𝑈 , (𝑉𝑈 = 𝑉 \ 𝑉𝐿 ∈ 𝑉 the unlabeled 

node set. )

• Solution: 
• 𝑦𝑈 = 𝔼 𝑦𝑈|𝐺, 𝑋, 𝑦𝐿

—— A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions, and 
Combinations. Jia & Benson, SIAM Journal on Mathematics of Data Science 2022.



3. Statistical framework that unifies LP and GNN ideas. 

—— A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions, and 
Combinations. Jia & Benson, SIAM Journal on Mathematics of Data Science 2022. 
—— Graph Signal Processing: Overview, Challenges and Applications. Ortega & etc., Proceedings of the IEEE 2018. 

Linear Graph Conv. (LGC) Simplified Graph Conv. (SGC) Graph Conv. Network (GCN)

1 − 𝛼 𝐼 + 𝛼𝑆 + 𝛼2𝑆2 +⋯ 𝑋𝛽 ሚ𝑆𝑘𝑋𝛽 𝜎 ሚ𝑆…𝜎 ሚ𝑆𝑋𝑊1 …𝑊𝑘 𝛽

𝑆 = 𝐷−1/2𝐴𝐷−1/2 ሚ𝑆 = 𝐷 + 𝐼 −1/2 𝐴 + 𝐼 𝐷 + 𝐼 −1/2 ሚ𝑆 = 𝐷 + 𝐼 −1/2 𝐴 + 𝐼 𝐷 + 𝐼 −1/2



5. Rethinking about 
Future



LP is a powerful tool: 

• Applied to residuals (correlated errors), features (smoothing / de-
noising), final predictions (more smoothness)

• Linear models are often superior to nonlinear ones (GNNs) in TNC.



Few-shot on Graph: 

• Even nothing holds meaning. 

• Even a lack can suffice. 



Feature？Label？

• Feature: attribute we use. 

• Label: attribute we predict. 



Residual?

• Explicitness: What we need to correct. 

• Implicitness: Influence we have modeled. 



Transductive？Inductive？

• Learning the influence of the lack component in the Few-shot Problem.

• Latent law.  
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Thx for Q&A    : )
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